Math 304 Sample Midterm 2

Question 1 Show that for functions $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}, \operatorname{div}(\nabla f \times \nabla g)=0$.
Question 2 Find the area of the region D in the first quadrant bounded by the parabolas $y=x^{2}$, $y=2 x^{2}, x=y^{2}$, and $x=4 y^{2}$, by using the transformation $T: D^{*} \rightarrow D$ given by $x=\left(u^{2} v\right)^{-1 / 3}$, $y=\left(u v^{2}\right)^{-1 / 3}$.

Question 3 Evaluate the path integral $\int_{\mathbf{c}} f(x, y, z) d s$, where $f(x, y, z)=2 x+9 x y$, and $\mathbf{c}(t)=$ $\left(t, t^{2}, t^{3}\right), 0 \leq t \leq 2$.

Question 4
a) Evaluate the line integral $\int_{\mathbf{c}} x^{2} y d x+x y^{3} d y$, where \mathbf{c} consists of the line segments from $(0,0)$ to $(3,3)$ and from $(3,3)$ to $(0,3)$.
b) Evaluate the line integral $\int_{\mathbf{c}}\left(e^{y}+y e^{x}\right) d x+\left(e^{x}+x e^{y}\right) d y$, where \mathbf{c} is the part of the graph $y=\ln 6 x$ joining $(1 / 6,0)$ to $(1 / 2, \ln 3)$.

Question 5

a) Find the equation of the tangent plane to the parametrized surface S in \mathbb{R}^{3} given by $(u, v) \mapsto$ $\left(u^{2}-v^{2}, u+v, u^{2}+4 v\right)$ at the point $(-1 / 4,1 / 2,2)$.
b) Use spherical coordinates to find the area of the surface on the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$.

Question 6 Evaluate $\iint_{S} z d S$, where S is the surface whose side S_{1} is given by the cylinder $x^{2}+y^{2}=$ 1 , whose bottom S_{2} is the disk $x^{2}+y^{2} \leq 1$, and whose top S_{3} is part of the plane $z=(1+x)$ that lies above S_{2}.

